Use the tangram pieces to make our pictures, or to design some of your own!

A game to make and play based on the number line.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Did you know mazes tell stories? Find out more about mazes and make one of your own.

Make a mobius band and investigate its properties.

Can you fit the tangram pieces into the outline of Little Ming?

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Using these kite and dart templates, you could try to recreate part of Penrose's famous tessellation or design one yourself.

Can you fit the tangram pieces into the outline of Mai Ling?

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Surprise your friends with this magic square trick.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

How can you make a curve from straight strips of paper?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of Granma T?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you cut up a square in the way shown and make the pieces into a triangle?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you put these shapes in order of size? Start with the smallest.