Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Make some celtic knot patterns using tiling techniques

A game to make and play based on the number line.

Use the tangram pieces to make our pictures, or to design some of your own!

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

This package contains hands-on code breaking activities based on the Enigma Schools Project. Suitable for Stages 2, 3 and 4.

Make an equilateral triangle by folding paper and use it to make patterns of your own.

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

These models have appeared around the Centre for Mathematical Sciences. Perhaps you would like to try to make some similar models of your own.

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Make a mobius band and investigate its properties.

How can you make a curve from straight strips of paper?

Surprise your friends with this magic square trick.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Did you know mazes tell stories? Find out more about mazes and make one of your own.

Using these kite and dart templates, you could try to recreate part of Penrose's famous tessellation or design one yourself.

This article for students gives some instructions about how to make some different braids.

This article for pupils gives an introduction to Celtic knotwork patterns and a feel for how you can draw them.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Follow these instructions to make a five-pointed snowflake from a square of paper.

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

Can you make the birds from the egg tangram?

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

What do these two triangles have in common? How are they related?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

More Logo for beginners. Now learn more about the REPEAT command.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Exploring and predicting folding, cutting and punching holes and making spirals.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

A description of how to make the five Platonic solids out of paper.