Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many models can you find which obey these rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

An activity making various patterns with 2 x 1 rectangular tiles.

These practical challenges are all about making a 'tray' and covering it with paper.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Here is a version of the game 'Happy Families' for you to make and play.

Can you make the birds from the egg tangram?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

These pictures show squares split into halves. Can you find other ways?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This activity investigates how you might make squares and pentominoes from Polydron.

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

For this activity which explores capacity, you will need to collect some bottles and jars.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

In this activity focusing on capacity, you will need a collection of different jars and bottles.