Explore the triangles that can be made with seven sticks of the same length.

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Here is a version of the game 'Happy Families' for you to make and play.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of these clocks?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This practical activity challenges you to create symmetrical designs by cutting a square into strips.

This challenge invites you to create your own picture using just straight lines. Can you identify shapes with the same number of sides and decorate them in the same way?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

For this activity which explores capacity, you will need to collect some bottles and jars.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

These pictures show squares split into halves. Can you find other ways?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!