Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

These pictures show squares split into halves. Can you find other ways?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

An activity making various patterns with 2 x 1 rectangular tiles.

Here is a version of the game 'Happy Families' for you to make and play.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make the birds from the egg tangram?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Explore the triangles that can be made with seven sticks of the same length.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

These practical challenges are all about making a 'tray' and covering it with paper.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Exploring and predicting folding, cutting and punching holes and making spirals.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this junk?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you fit the tangram pieces into the outline of this telephone?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...