Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of these rabbits?

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Can you fit the tangram pieces into the outline of Mai Ling?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the rocket?

Using these kite and dart templates, you could try to recreate part of Penrose's famous tessellation or design one yourself.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

Can you split each of the shapes below in half so that the two parts are exactly the same?

For this activity which explores capacity, you will need to collect some bottles and jars.

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of these convex shapes?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Can you make a rectangle with just 2 dominoes? What about 3, 4, 5, 6, 7...?

Explore the triangles that can be made with seven sticks of the same length.

Can you fit the tangram pieces into the outline of Granma T?