Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Mai Ling?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this sports car?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the rocket?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this telephone?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you make the birds from the egg tangram?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you fit the tangram pieces into the outline of Granma T?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you put these shapes in order of size? Start with the smallest.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you make five differently sized squares from the tangram pieces?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?