Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

An activity making various patterns with 2 x 1 rectangular tiles.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

These practical challenges are all about making a 'tray' and covering it with paper.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

These pictures show squares split into halves. Can you find other ways?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you make the birds from the egg tangram?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Here is a version of the game 'Happy Families' for you to make and play.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

How many models can you find which obey these rules?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

A game in which players take it in turns to choose a number. Can you block your opponent?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Explore the triangles that can be made with seven sticks of the same length.

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

For this activity which explores capacity, you will need to collect some bottles and jars.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.