Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Granma T?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the birds from the egg tangram?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

The challenge for you is to make a string of six (or more!) graded cubes.

Make a cube out of straws and have a go at this practical challenge.

Here is a version of the game 'Happy Families' for you to make and play.

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you make five differently sized squares from the tangram pieces?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you split each of the shapes below in half so that the two parts are exactly the same?