Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Here is a version of the game 'Happy Families' for you to make and play.

In this activity focusing on capacity, you will need a collection of different jars and bottles.

Can you make five differently sized squares from the tangram pieces?

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

For this activity which explores capacity, you will need to collect some bottles and jars.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of this junk?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

How can you make a curve from straight strips of paper?

This practical activity challenges you to create symmetrical designs by cutting a square into strips.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?