Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

For this activity which explores capacity, you will need to collect some bottles and jars.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Here is a version of the game 'Happy Families' for you to make and play.

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you make five differently sized squares from the tangram pieces?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this telephone?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this junk?

Watch this "Notes on a Triangle" film. Can you recreate parts of the film using cut-out triangles?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

The class were playing a maths game using interlocking cubes. Can you help them record what happened?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these people?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Make a cube out of straws and have a go at this practical challenge.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

How can you make a curve from straight strips of paper?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

This practical activity challenges you to create symmetrical designs by cutting a square into strips.