Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

These pictures show squares split into halves. Can you find other ways?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you make five differently sized squares from the tangram pieces?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Granma T?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you put these shapes in order of size? Start with the smallest.

Exploring and predicting folding, cutting and punching holes and making spirals.