Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

This practical activity challenges you to create symmetrical designs by cutting a square into strips.

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Follow these instructions to make a five-pointed snowflake from a square of paper.

For this activity which explores capacity, you will need to collect some bottles and jars.

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

In this activity focusing on capacity, you will need a collection of different jars and bottles.

Explore the triangles that can be made with seven sticks of the same length.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Can you make five differently sized squares from the tangram pieces?

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

A brief video looking at how you can sometimes use symmetry to distinguish knots. Can you use this idea to investigate the differences between the granny knot and the reef knot?

Watch this "Notes on a Triangle" film. Can you recreate parts of the film using cut-out triangles?

Can you make a rectangle with just 2 dominoes? What about 3, 4, 5, 6, 7...?

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you lay out the pictures of the drinks in the way described by the clue cards?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

How can you make a curve from straight strips of paper?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Have you ever noticed the patterns in car wheel trims? These questions will make you look at car wheels in a different way!

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.