Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Here is a version of the game 'Happy Families' for you to make and play.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Fung at the table?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

These pictures show squares split into halves. Can you find other ways?

Can you split each of the shapes below in half so that the two parts are exactly the same?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Mai Ling?

Make a cube out of straws and have a go at this practical challenge.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you put these shapes in order of size? Start with the smallest.