Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Here is a version of the game 'Happy Families' for you to make and play.

Can you make the birds from the egg tangram?

Can you fit the tangram pieces into the outlines of these people?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you fit the tangram pieces into the outline of Little Fung at the table?

These pictures show squares split into halves. Can you find other ways?

Can you fit the tangram pieces into the outline of the rocket?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Make a cube out of straws and have a go at this practical challenge.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you put these shapes in order of size? Start with the smallest.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of the child walking home from school?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of Granma T?

Explore the triangles that can be made with seven sticks of the same length.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you fit the tangram pieces into the outlines of the workmen?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?