Can you make five differently sized squares from the tangram pieces?

We have a box of cubes, triangular prisms, cones, cuboids, cylinders and tetrahedrons. Which of the buildings would fall down if we tried to make them?

For this activity which explores capacity, you will need to collect some bottles and jars.

Make a chair and table out of interlocking cubes, making sure that the chair fits under the table!

Using a loop of string stretched around three of your fingers, what different triangles can you make? Draw them and sort them into groups.

In this activity focusing on capacity, you will need a collection of different jars and bottles.

Sara and Will were sorting some pictures of shapes on cards. "I'll collect the circles," said Sara. "I'll take the red ones," answered Will. Can you see any cards they would both want?

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

These pictures show squares split into halves. Can you find other ways?

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you make a rectangle with just 2 dominoes? What about 3, 4, 5, 6, 7...?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Explore the triangles that can be made with seven sticks of the same length.

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you fit the tangram pieces into the outline of this junk?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you fit the tangram pieces into the outline of this telephone?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Watch this "Notes on a Triangle" film. Can you recreate parts of the film using cut-out triangles?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

How can you make a curve from straight strips of paper?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This practical activity challenges you to create symmetrical designs by cutting a square into strips.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.