In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Investigate what happens when you add house numbers along a street in different ways.

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This article for teachers suggests ideas for activities built around 10 and 2010.

An investigation that gives you the opportunity to make and justify predictions.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

I cut this square into two different shapes. What can you say about the relationship between them?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How many models can you find which obey these rules?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Why does the tower look a different size in each of these pictures?

In how many ways can you stack these rods, following the rules?