Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

An activity making various patterns with 2 x 1 rectangular tiles.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many models can you find which obey these rules?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

In how many ways can you stack these rods, following the rules?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you find ways of joining cubes together so that 28 faces are visible?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?