A challenging activity focusing on finding all possible ways of stacking rods.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenge extends the Plants investigation so now four or more children are involved.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

This article for teachers suggests ideas for activities built around 10 and 2010.

In how many ways can you stack these rods, following the rules?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Numbers arranged in a square but some exceptional spatial awareness probably needed.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Investigate the different ways you could split up these rooms so that you have double the number.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

An activity making various patterns with 2 x 1 rectangular tiles.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you find ways of joining cubes together so that 28 faces are visible?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What can you say about the child who will be first on the playground tomorrow morning at breaktime in your school?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

How many models can you find which obey these rules?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

An investigation that gives you the opportunity to make and justify predictions.

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?