How will you decide which way of flipping over and/or turning the grid will give you the highest total?

A challenging activity focusing on finding all possible ways of stacking rods.

Numbers arranged in a square but some exceptional spatial awareness probably needed.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

How many different sets of numbers with at least four members can you find in the numbers in this box?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

In how many ways can you stack these rods, following the rules?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This article for teachers suggests ideas for activities built around 10 and 2010.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

An investigation that gives you the opportunity to make and justify predictions.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Investigate the different ways you could split up these rooms so that you have double the number.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?