What statements can you make about the car that passes the school gates at 11am on Monday? How will you come up with statements and test your ideas?

What can you say about the child who will be first on the playground tomorrow morning at breaktime in your school?

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

Investigate what happens when you add house numbers along a street in different ways.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

An activity making various patterns with 2 x 1 rectangular tiles.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the largest cuboid you can wrap in an A3 sheet of paper?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

Here are many ideas for you to investigate - all linked with the number 2000.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How many models can you find which obey these rules?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

Why does the tower look a different size in each of these pictures?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In how many ways can you stack these rods, following the rules?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many different sets of numbers with at least four members can you find in the numbers in this box?

I cut this square into two different shapes. What can you say about the relationship between them?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Investigate the different ways you could split up these rooms so that you have double the number.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.