A follow-up activity to Tiles in the Garden.

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A description of some experiments in which you can make discoveries about triangles.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Here are many ideas for you to investigate - all linked with the number 2000.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

An investigation that gives you the opportunity to make and justify predictions.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What do these two triangles have in common? How are they related?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

A challenging activity focusing on finding all possible ways of stacking rods.

Investigate the number of faces you can see when you arrange three cubes in different ways.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

It starts quite simple but great opportunities for number discoveries and patterns!

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Investigate these hexagons drawn from different sized equilateral triangles.