48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

It starts quite simple but great opportunities for number discoveries and patterns!

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

In this investigation, we look at Pascal's Triangle in a slightly different way - rotated and with the top line of ones taken off.

Investigate what happens when you add house numbers along a street in different ways.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

An investigation that gives you the opportunity to make and justify predictions.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

Investigate the different ways you could split up these rooms so that you have double the number.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?