Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you find ways of joining cubes together so that 28 faces are visible?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

An activity making various patterns with 2 x 1 rectangular tiles.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many models can you find which obey these rules?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

What do these two triangles have in common? How are they related?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

In how many ways can you stack these rods, following the rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate what happens when you add house numbers along a street in different ways.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate the different ways you could split up these rooms so that you have double the number.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Investigate the number of faces you can see when you arrange three cubes in different ways.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?