If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Here are many ideas for you to investigate - all linked with the number 2000.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Investigate the different ways you could split up these rooms so that you have double the number.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many models can you find which obey these rules?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

In how many ways can you stack these rods, following the rules?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

An activity making various patterns with 2 x 1 rectangular tiles.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Investigate the number of faces you can see when you arrange three cubes in different ways.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

What is the largest cuboid you can wrap in an A3 sheet of paper?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Investigate these hexagons drawn from different sized equilateral triangles.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?