Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Investigate what happens when you add house numbers along a street in different ways.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

An investigation that gives you the opportunity to make and justify predictions.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

In this investigation, we look at Pascal's Triangle in a slightly different way - rotated and with the top line of ones taken off.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

How many models can you find which obey these rules?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Why does the tower look a different size in each of these pictures?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In how many ways can you stack these rods, following the rules?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Here are many ideas for you to investigate - all linked with the number 2000.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?