I cut this square into two different shapes. What can you say about the relationship between them?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

An investigation that gives you the opportunity to make and justify predictions.

What do these two triangles have in common? How are they related?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

An activity making various patterns with 2 x 1 rectangular tiles.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Here are many ideas for you to investigate - all linked with the number 2000.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Investigate the number of faces you can see when you arrange three cubes in different ways.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

A follow-up activity to Tiles in the Garden.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Why does the tower look a different size in each of these pictures?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

What is the largest cuboid you can wrap in an A3 sheet of paper?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

A challenging activity focusing on finding all possible ways of stacking rods.

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.