Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

An investigation that gives you the opportunity to make and justify predictions.

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

This article for teachers suggests ideas for activities built around 10 and 2010.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Investigate what happens when you add house numbers along a street in different ways.

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

In how many ways can you stack these rods, following the rules?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Why does the tower look a different size in each of these pictures?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

I cut this square into two different shapes. What can you say about the relationship between them?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?