Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

What can you say about the child who will be first on the playground tomorrow morning at breaktime in your school?

In this article for teachers, Bernard gives an example of taking an initial activity and getting questions going that lead to other explorations.

What statements can you make about the car that passes the school gates at 11am on Monday? How will you come up with statements and test your ideas?

Why does the tower look a different size in each of these pictures?

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

This problem is intended to get children to look really hard at something they will see many times in the next few months.

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

What do these two triangles have in common? How are they related?

All types of mathematical problems serve a useful purpose in mathematics teaching, but different types of problem will achieve different learning objectives. In generalmore open-ended problems have. . . .

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Here is your chance to investigate the number 28 using shapes, cubes ... in fact anything at all.

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

I cut this square into two different shapes. What can you say about the relationship between them?

An investigation that gives you the opportunity to make and justify predictions.

What is the largest cuboid you can wrap in an A3 sheet of paper?

Investigate what happens when you add house numbers along a street in different ways.

An activity making various patterns with 2 x 1 rectangular tiles.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Sort the houses in my street into different groups. Can you do it in any other ways?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

The red ring is inside the blue ring in this picture. Can you rearrange the rings in different ways? Perhaps you can overlap them or put one outside another?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many models can you find which obey these rules?

We think this 3x3 version of the game is often harder than the 5x5 version. Do you agree? If so, why do you think that might be?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?