There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

An activity making various patterns with 2 x 1 rectangular tiles.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In how many ways can you stack these rods, following the rules?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

How many models can you find which obey these rules?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

An investigation that gives you the opportunity to make and justify predictions.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Sort the houses in my street into different groups. Can you do it in any other ways?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many ways can you find of tiling the square patio, using square tiles of different sizes?