This article for teachers suggests ideas for activities built around 10 and 2010.

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

I cut this square into two different shapes. What can you say about the relationship between them?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

A challenging activity focusing on finding all possible ways of stacking rods.

In how many ways can you stack these rods, following the rules?

How will you decide which way of flipping over and/or turning the grid will give you the highest total?

Investigate what happens when you add house numbers along a street in different ways.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

An activity making various patterns with 2 x 1 rectangular tiles.

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

The red ring is inside the blue ring in this picture. Can you rearrange the rings in different ways? Perhaps you can overlap them or put one outside another?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

How many models can you find which obey these rules?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Numbers arranged in a square but some exceptional spatial awareness probably needed.

This problem is intended to get children to look really hard at something they will see many times in the next few months.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Why does the tower look a different size in each of these pictures?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

An investigation that gives you the opportunity to make and justify predictions.