If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In how many ways can you stack these rods, following the rules?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

This challenge extends the Plants investigation so now four or more children are involved.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

An investigation that gives you the opportunity to make and justify predictions.

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

How many models can you find which obey these rules?

Sort the houses in my street into different groups. Can you do it in any other ways?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

An activity making various patterns with 2 x 1 rectangular tiles.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?