The red ring is inside the blue ring in this picture. Can you rearrange the rings in different ways? Perhaps you can overlap them or put one outside another?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

Why does the tower look a different size in each of these pictures?

Here is your chance to investigate the number 28 using shapes, cubes ... in fact anything at all.

This problem is intended to get children to look really hard at something they will see many times in the next few months.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

Investigate these hexagons drawn from different sized equilateral triangles.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Investigate the numbers that come up on a die as you roll it in the direction of north, south, east and west, without going over the path it's already made.

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

Investigate and explain the patterns that you see from recording just the units digits of numbers in the times tables.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Here are many ideas for you to investigate - all linked with the number 2000.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How many models can you find which obey these rules?

Follow the directions for circling numbers in the matrix. Add all the circled numbers together. Note your answer. Try again with a different starting number. What do you notice?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

An investigation that gives you the opportunity to make and justify predictions.

Investigate the different ways you could split up these rooms so that you have double the number.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

In how many ways can you stack these rods, following the rules?