What can you say about the child who will be first on the playground tomorrow morning at breaktime in your school?

What statements can you make about the car that passes the school gates at 11am on Monday? How will you come up with statements and test your ideas?

This activity asks you to collect information about the birds you see in the garden. Are there patterns in the data or do the birds seem to visit randomly?

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

The red ring is inside the blue ring in this picture. Can you rearrange the rings in different ways? Perhaps you can overlap them or put one outside another?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

What is the largest cuboid you can wrap in an A3 sheet of paper?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

I cut this square into two different shapes. What can you say about the relationship between them?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

An investigation that gives you the opportunity to make and justify predictions.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

An activity making various patterns with 2 x 1 rectangular tiles.

Investigate what happens when you add house numbers along a street in different ways.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This problem is intended to get children to look really hard at something they will see many times in the next few months.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Why does the tower look a different size in each of these pictures?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Numbers arranged in a square but some exceptional spatial awareness probably needed.

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

It starts quite simple but great opportunities for number discoveries and patterns!

In how many ways can you stack these rods, following the rules?

A challenging activity focusing on finding all possible ways of stacking rods.