Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Investigate the different ways you could split up these rooms so that you have double the number.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Sort the houses in my street into different groups. Can you do it in any other ways?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How many models can you find which obey these rules?

This challenge extends the Plants investigation so now four or more children are involved.

In how many ways can you stack these rods, following the rules?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

An activity making various patterns with 2 x 1 rectangular tiles.

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?