There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

Explore Alex's number plumber. What questions would you like to ask? Don't forget to keep visiting NRICH projects site for the latest developments and questions.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

How many different sets of numbers with at least four members can you find in the numbers in this box?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possibilities that could come up?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

Investigate this balance which is marked in halves. If you had a weight on the left-hand 7, where could you hang two weights on the right to make it balance?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

In how many ways can you stack these rods, following the rules?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

An investigation that gives you the opportunity to make and justify predictions.

Complete these two jigsaws then put one on top of the other. What happens when you add the 'touching' numbers? What happens when you change the position of the jigsaws?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Investigate the different ways you could split up these rooms so that you have double the number.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Investigate what happens when you add house numbers along a street in different ways.