This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

These pictures show squares split into halves. Can you find other ways?

Sort the houses in my street into different groups. Can you do it in any other ways?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Explore the triangles that can be made with seven sticks of the same length.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you find ways of joining cubes together so that 28 faces are visible?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

What do these two triangles have in common? How are they related?

Investigate the different ways you could split up these rooms so that you have double the number.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

In how many ways can you stack these rods, following the rules?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

An activity making various patterns with 2 x 1 rectangular tiles.

How many models can you find which obey these rules?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.