Investigate how this pattern of squares continues. You could measure lengths, areas and angles.

What do these two triangles have in common? How are they related?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

I cut this square into two different shapes. What can you say about the relationship between them?

This article for teachers suggests ideas for activities built around 10 and 2010.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

The red ring is inside the blue ring in this picture. Can you rearrange the rings in different ways? Perhaps you can overlap them or put one outside another?

What is the largest cuboid you can wrap in an A3 sheet of paper?

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Sort the houses in my street into different groups. Can you do it in any other ways?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the different ways you could split up these rooms so that you have double the number.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Explore ways of colouring this set of triangles. Can you make symmetrical patterns?

An activity making various patterns with 2 x 1 rectangular tiles.

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Here is your chance to investigate the number 28 using shapes, cubes ... in fact anything at all.

How many models can you find which obey these rules?

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

In how many ways can you stack these rods, following the rules?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?