Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Use your mouse to move the red and green parts of this disc. Can you make images which show the turnings described?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many models can you find which obey these rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Sort the houses in my street into different groups. Can you do it in any other ways?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

An activity making various patterns with 2 x 1 rectangular tiles.

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

What do these two triangles have in common? How are they related?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Investigate the different ways you could split up these rooms so that you have double the number.

I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

These caterpillars have 16 parts. What different shapes do they make if each part lies in the small squares of a 4 by 4 square?

Investigate the number of faces you can see when you arrange three cubes in different ways.

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

In how many ways can you stack these rods, following the rules?