Search by Topic

Resources tagged with Number theory similar to Air Nets:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 8 results

Broad Topics > Numbers and the Number System > Number theory

problem icon

Where Can We Visit?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

problem icon

More Marbles

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

problem icon

How Much Can We Spend?

Stage: 3 Challenge Level: Challenge Level:1

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

problem icon

Marbles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

problem icon

Helen's Conjecture

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

problem icon

Strange Numbers

Stage: 3 Challenge Level: Challenge Level:1

All strange numbers are prime. Every one digit prime number is strange and a number of two or more digits is strange if and only if so are the two numbers obtained from it by omitting either. . . .

problem icon

Differences

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

problem icon

A One in Seven Chance

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the remainder when 2^{164}is divided by 7?