An inequality involving integrals of squares of functions.

Sort these mathematical propositions into a series of 8 correct statements.

Can you hit the target functions using a set of input functions and a little calculus and algebra?

Explore the intersection possibilities for normal pdfs.

How would you sort out these integrals?

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?

Can you find the area of the central part of this shape? Can you do it in more than one way?

Is it true that a large integer m can be taken such that: 1 + 1/2 + 1/3 + ... +1/m > 100 ?

Draw the graph of a continuous increasing function in the first quadrant and horizontal and vertical lines through two points. The areas in your sketch lead to a useful formula for finding integrals.

Match the charts of these functions to the charts of their integrals.