Find out why these matrices are magic. Can you work out how they were made? Can you make your own Magic Matrix?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Use the information to work out how many gifts there are in each pile.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Amy's mum had given her £2.50 to spend. She bought four times as many pens as pencils and was given 40p change. How many of each did she buy?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

There are a number of coins on a table. One quarter of the coins show heads. If I turn over 2 coins, then one third show heads. How many coins are there altogether?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

In 1871 a mathematician called Augustus De Morgan died. De Morgan made a puzzling statement about his age. Can you discover which year De Morgan was born in?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Jo has three numbers which she adds together in pairs. When she does this she has three different totals: 11, 17 and 22 What are the three numbers Jo had to start with?”

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

56 406 is the product of two consecutive numbers. What are these two numbers?

Can you use the information to find out which cards I have used?

Can you guess the colours of the 10 marbles in the bag? Can you develop an effective strategy for reaching 1000 points in the least number of rounds?

Three teams have each played two matches. The table gives the total number points and goals scored for and against each team. Fill in the table and find the scores in the three matches.

A 3 digit number is multiplied by a 2 digit number and the calculation is written out as shown with a digit in place of each of the *'s. Complete the whole multiplication sum.

A hallway floor is tiled and each tile is one foot square. Given that the number of tiles around the perimeter is EXACTLY half the total number of tiles, find the possible dimensions of the hallway.

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?