Can you go from A to Z right through the alphabet in the hexagonal maze?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Use the information to work out how many gifts there are in each pile.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

There were 22 legs creeping across the web. How many flies? How many spiders?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Use these four dominoes to make a square that has the same number of dots on each side.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you use the information to find out which cards I have used?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?