You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you make a 3x3 cube with these shapes made from small cubes?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

Can you use the information to find out which cards I have used?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

Use the information about Sally and her brother to find out how many children there are in the Brown family.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

56 406 is the product of two consecutive numbers. What are these two numbers?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Put operations signs between the numbers 3 4 5 6 to make the highest possible number and lowest possible number.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

Find out why these matrices are magic. Can you work out how they were made? Can you make your own Magic Matrix?

As you come down the ladders of the Tall Tower you collect useful spells. Which way should you go to collect the most spells?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.