Use the 'double-3 down' dominoes to make a square so that each side has eight dots.

Use these four dominoes to make a square that has the same number of dots on each side.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Use the information to work out how many gifts there are in each pile.

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you use the information to find out which cards I have used?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

In this problem you have to place four by four magic squares on the faces of a cube so that along each edge of the cube the numbers match.

56 406 is the product of two consecutive numbers. What are these two numbers?