Can you find a path from a number at the top of this network to the bottom which goes through each number from 1 to 9 once and once only?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

A shunting puzzle for 1 person. Swop the positions of the counters at the top and bottom of the board.

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

Amy's mum had given her £2.50 to spend. She bought four times as many pens as pencils and was given 40p change. How many of each did she buy?

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

Use the information to work out how many gifts there are in each pile.

Using the numbers 1, 2, 3, 4 and 5 once and only once, and the operations x and ÷ once and only once, what is the smallest whole number you can make?

All the girls would like a puzzle each for Christmas and all the boys would like a book each. Solve the riddle to find out how many puzzles and books Santa left.

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Can you go from A to Z right through the alphabet in the hexagonal maze?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

Peter, Melanie, Amil and Jack received a total of 38 chocolate eggs. Use the information to work out how many eggs each person had.

Sam sets up displays of cat food in his shop in triangular stacks. If Felix buys some, then how can Sam arrange the remaining cans in triangular stacks?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Using only six straight cuts, find a way to make as many pieces of pizza as possible. (The pieces can be different sizes and shapes).

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

There were 22 legs creeping across the web. How many flies? How many spiders?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Use five steps to count forwards or backwards in 1s or 10s to get to 50. What strategies did you use?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

There are three baskets, a brown one, a red one and a pink one, holding a total of 10 eggs. Can you use the information given to find out how many eggs are in each basket?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

You have two sets of the digits 0 – 9. Can you arrange these in the five boxes to make four-digit numbers as close to the target numbers as possible?

Can you use the information to find out which cards I have used?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?