Search by Topic

Resources tagged with Patterned numbers similar to More Beads:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 20 results

Broad Topics > Numbers and the Number System > Patterned numbers

problem icon

Walkabout

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A walk is made up of diagonal steps from left to right, starting at the origin and ending on the x-axis. How many paths are there for 4 steps, for 6 steps, for 8 steps?

problem icon

Counting Binary Ops

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

How many ways can the terms in an ordered list be combined by repeating a single binary operation. Show that for 4 terms there are 5 cases and find the number of cases for 5 terms and 6 terms.

problem icon

One Basket or Group Photo

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Libby Jared helped to set up NRICH and this is one of her favourite problems. It's a problem suitable for a wide age range and best tackled practically.

problem icon

Try to Win

Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

problem icon

Magic Squares

Stage: 4 and 5

An account of some magic squares and their properties and and how to construct them for yourself.

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Sixty-seven Squared

Stage: 5 Challenge Level: Challenge Level:1

Evaluate these powers of 67. What do you notice? Can you convince someone what the answer would be to (a million sixes followed by a 7) squared?

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

How Old Am I?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Tower of Hanoi

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

problem icon

On the Importance of Pedantry

Stage: 3, 4 and 5

A introduction to how patterns can be deceiving, and what is and is not a proof.

problem icon

Generating Number Patterns: an Email Conversation

Stage: 2, 3 and 4

This article for teachers describes the exchanges on an email talk list about ideas for an investigation which has the sum of the squares as its solution.

problem icon

Odd Differences

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

problem icon

Back to Basics

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find b where 3723(base 10) = 123(base b).

problem icon

Rolling Coins

Stage: 4 Challenge Level: Challenge Level:1

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

problem icon

Magical Maze - 35 Activities

Stage: 4 and 5

Investigations and activities for you to enjoy on pattern in nature.