Sealed solution
Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?
Problem
Sealed Solution printable sheet
Here is a set of ten cards, each showing one of the digits from 0 to 9:

The ten cards are divided up between five envelopes so that there are two cards in each envelope.
The sum of the two numbers inside it is written on each envelope:

What numbers could be inside the "8" envelope?
Thank you to Alan Parr who inspired this task.
Getting Started
What are the possible ways of making the numbers on the envelopes?
Which number has the fewest possible combinations? It might be worth starting from this envelope and looking at what could be in the others.
Teachers' Resources
Why do this problem?
Sealed Solution offers the chance for children to work in a systematic way and is a great context in which to encourage them to explain and justify their reasoning.
Possible approach
Begin by familiarising children with the context: Using digit cards 0 to 5, invite the class to watch as you put 0 and 1 in one envelope and write their total on the outside (or on a 'post-it' note stuck to the envelope). Put 3 and 5 in another envelope, again writing their total on the envelope. Explain that the other two cards will go in the last envelope. What will the total be? How do they know?
Try this again, this time putting 0 and 5 in one envelope and recording the total. But then put two cards in another envelope without showing them to the children. Write the total on the outside of the envelope. Repeat this for the third envelope. (For example you could have 1 and 3 in the first and 2 and 4 in the second.) What numbers are in the two envelopes? How do they know?
Try again, this time keeping 0 and 5 in the first envelope but suggest that you want to put the other cards in pairs into the envelopes, so that the totals on the other two are the same. What could you do? How do they know? At each stage, children can be working in pairs, perhaps using mini-whiteboards and digit cards to try out their ideas.
Key questions
Which envelope shall we try first? Why?
What could be in this envelope?
Are there any numbers which you know definitely aren't in this envelope? Why?
Are there any other solutions?
Possible support
Having digit cards available for children to use will free up their thinking and will make it easier to try out different ideas without worrying about crossing ideas out on paper.
Possible extension
Children could make up their own problem along these lines.
Alan Parr, the creator of this task, wrote to tell us:
'I've recently returned to this for the first time in ages, working with some Year 6s [10 and 11 year olds]. They found it so accessible and involving that we took it to places I'd never previously dreamt of.' You can read what they did in the first April 2015 post on Alan's blog, and he writes about the task again in two March 2017 posts.
Submit a solution
What we like to see
We have written an article on what we are looking for when we decide which solutions to publish.
Explain your methods clearly for other school students to read.
Give reasons and convincing arguments or proofs where you can.
You can share your work with us by typing into the form or uploading a file (must be less than 10MB.)
What can I upload?
- Word documents
- PDF files
- Images - any format
- Screenshots
- Photos of written work
If your work is on another app
You can also send us a link to your work on:
- Youtube/Vimeo
- Google Docs
- Sharepoint/Office 365
- Anywhere sensible on the internet!
How we use your information
By uploading your solution here you are giving us permission to publish your work, either as a whole or edited extracts, on the NRICH website and in associated educational materials for students and teachers, at our discretion.
For our full terms of use regarding submitted solutions and user contributions please see https://nrich.maths.org/terms
Your information (first name, school name etc) is optional. If supplied, it may be used for attribution purposes only if your work is published on the website. Data that you supply on this form (e.g. age if supplied, location if supplied) may also be anonymised and used for evaluation and reporting.
For more information about the University's policies and procedures on handling personal information, and your rights under data protection legislation, please see https://www.information-compliance.admin.cam.ac.uk/data-protection/general-data.