Dalmatians

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem



Investigate the sequences obtained by starting with any positive 2 digit number $(10a+b)$ and repeatedly using the rule

$10a + b \to 10b -a$

to get the next number in the sequence.

 

NOTES AND BACKGROUND

You can take any number and write it in the form $10a+b$ , that is as a multiple of ten plus a number $b$ between 0 and 9, for example:

$$57 = 10 \times 5 + 7\quad\quad -6 = 10 \times (-1) + 4 \quad\quad 123 = 10\times 12 + 3$$

This iterative procedure is an example of a dynamical system which can be studied in more detail at university; you may read an introduction to this fascinating subject in Whole Number Dynamics 1 . Dynamical systems using decimals can have many strange and interesting properties; they form the foundation of the subject of chaos, which you can read about on the Plus website .