Can you traverse it?

How can you decide if a graph is traversable?

Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

You might like to try The Bridges of Konigsberg before exploring this problem.

A traversable network is one you can draw without taking your pen off the paper, and without going over any edge twice.

For each network below, decide whether or not it is traversable. It might be helpful to keep a track of where you started, the route you took, and where you finished.

You may find it useful to download a printable copy of the networks

Image
Can you traverse it?

  

What do you notice about traversable networks where you started and finished in the same place?

What about traversable networks where you started and finished in different places?

What do you notice about the number of times you visited each vertex (point)?

For the networks which are not transversable, what is the smallest number of edges that you need to add (or remove) so that the resulting network is traversable?

Can you find a condition that guarantees a network is not traversable?

Can you explain why?