Can you prove Pythagoras' Theorem?
Here is a diagram and a proof that has been scrambled up.
Can you rearrange it into its original order?

Along each side of the large square there is a point where an angle of the enclosed quadrilateral, an angle x and an angle y meet	A
Therefore the enclosed quadrilateral is a square	B
Take a square with side lengths $a+b$, divided up into four identical right-angled triangles and an enclosed quadrilateral of sides c	C
The area of the four right-angled triangles $=4 \times \frac{1}{2} a b=2 a b$	D
Area of enclosed square $=a^{2}+2 a b+b^{2}-2 a b=a^{2}+b^{2}$	E
The area of the large square $=(a+b)^{2}=a^{2}+2 a b+b^{2}$	F
These three angles add up to 180°, therefore each angle of the enclosed quadrilateral is a right angle	H
The angles of the triangles x and y add up to 90°	I
The area of the enclosed square $=$	
area of the large square - area of four triangles	J
The area of the enclosed square is also given by c^{2}, therefore $a^{2}+b^{2}=c^{2}$	K
Therefore, in any right-angled triangle, the area of the square on the hypotenuse	
equals the sum of the areas of the squares on the other two sides	

