To start with, i converted this procedure into javascript, a programming

language most commonly used in webpages:

function getHCF(x,y) {

 while (x != y) {

 if (x > y) {

 x = x-y

 }

 if (x < y) {

 y = y-x

 }

 }

 return x;

}

the first line assigns a name to the procedure, and i have appropriately

named it getHCF. The x and y within the brackets are variables that are

input when the procedure is called. [An example of this would be

getHCF(12,15).]

The next line creates a loop which will not break untill the condition is

false (ie. when x does equal y).

The entire contents of the while loop simply does exactly what the main

body of the process diagram dictates.

The return statement at the end ends the function and its presence outside

the while loop demonstrates how its execution is dependant upon the loop's

perameter returning as false. A variable can be assigned the returned

value, or, alternatively, the value can be output. This is done from the

point at which the procedure is called. [Eg. alert(getHCF(12,15))]

Lets apply an example to see how it would work...

getHCF(12,15)

so, x=12, y=15

(x != y) = true

(x > y) = false

(x < y) = true

y = y-x

y = 15-12

y = 3

(x > y) = true

x = x-y

x = 12-3

x = 9

(x < y) = false

(x > y) = true

x = x-y

x = 9-3

x=6

(x < y) = false

(x > y) = true

x = x-y

x = 6-3

x = 3

return x;

So the result is 3, and, as suggested by the function name, 3 is equal to

the HCF of 12 and 15.

Before I start to explain, for ease of explaination later, let function

sortNumber be

function sortNumber(a,b)

{

return a - b;

}

If we create a list and sort it according to size (using the javascript

sort function and function sortNumber)

[ans = new Array(x,y)

 ans = ans.sort(sortNumber)]

then the origional function can be changed to:

function getHCF(x,y) {

ans = new Array(x,y)

ans = ans.sort(sortNumber)

while (ans[0] != ans[1]) {

ans[1] = ans[1]-ans[0]

ans = ans.sort(sortNumber)

}

return ans[0];

}

This means that the larger number [ans[1]] is assigned as the smaller

number [ans[0]] subtracted from the larger number [ans[1]].

Eg.

500,80

420,80

340,80

260,80

180,80

100,80

20,80

80,20

60,20

40,20

20,20 <--

It may be valuable to observe that the remainder of 500/80 is 20; 500 =

80*6+20. It may also be valuable to note that the remainder of 80/20 is 0,

and so, therefore, if the divisor (20) is added, both sides become equal to

20.

In javascript, in order to get the remainder of a division, a%b is used,

where a is the numerator and b is the denominator. We can, therefore,

re-write the function again as:

function getHCF(x,y) {

ans = new Array(x,y)

ans = ans.sort(sortNumber)

while (ans[0] != 0) {

ans[1] = ans[1]%ans[0]

ans = ans.sort(sortNumber)

}

return ans[1];

}

Although similar to before, the three differences decrease the number of

cycles significantly;

Eg.

500,80

20,80

80,20

0,20 <--

Eg.

80,7

3,7

7,3

1,3

3,1

0,1 <--

The repeated calculation of a remainder checks whether or not the greater

number is entirely divisible by the lesser number, and while the remainder

remains above zero, the greater number is not directly divisible by the

other. As both numbers become smaller and smaller, the remainders are

reduced similarly, and, if a division is not possible before one number

reaches 1, then 1 is the only common factor, and the loop ends (as division

by 1 simply returns the numerator, and so no remainder can be given). If a

division by any number except 1 gives a remainder of 0, that is a common

factor, and, as the highest potential numbers are tested before reaching

lower numbers, if it is the first number to leave a remainder of 0, it is

the HCF.

